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Abstract

A method is proposed to estimate the velocity field of an unsteady flow using a limited number of flow measurements.
The method is based on a non-linear low-dimensional model of the flow and on an expansion of the velocity field in terms
of empirical basis functions. The main idea is to impose that the coefficients of the modal expansion of the velocity field
gives the best approximation of the available measurements, while at the same time satisfying the non-linear low-order
model as closely as possible. Practical applications may range from feedback flow control to the monitoring of the flow
in non-accessible regions. The proposed technique is applied to the flow around a confined square cylinder, both in
two- and three-dimensional flow regimes. Comparisons are provided with existing linear and non-linear estimation
techniques.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of deriving an accurate estimation of the velocity field in an unsteady complex flow, starting
from a limited number of measurements, is of great importance in many engineering applications. For
instance, in the design of a feedback control, some knowledge of the velocity field is a fundamental element
in deciding the appropriate actuator reaction to different flow conditions. In other applications it may be
necessary, or advisable, to monitor the flow conditions in regions which are difficult to access, or where probes
cannot be fitted without causing interference problems. Similar problems arise in physics when trying to filter
data resulting from a chaotic system, see for example [1].
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.11.005

* Corresponding author.
E-mail address: angelo.iollo@math.u-bordeaux1.fr (A. Iollo).

mailto:angelo.iollo@math.u-bordeaux1.fr


M. Buffoni et al. / Journal of Computational Physics 227 (2008) 2626–2643 2627
The method that we propose exploits an idea which is similar to that at the basis of the Kalman filter (see
[14]). The starting point is a Galerkin representation of the velocity field uðx; tÞ in terms of Nr empirical eigen-
functions, UiðxÞ, obtained by proper orthogonal decomposition (POD) (see [17])
uðx; tÞ ¼ �uðxÞ þ
XNr

i¼1

aiðtÞUiðxÞ ð1Þ
where uðx; tÞ : Rn � ½0; T � ! Rn, UiðxÞ : Rn ! Rn, n 2 f2; 3g according to the physical space dimension, �uðxÞ is
some reference velocity field and aiðtÞ : I ¼ ½0; T � � R! R.

For a given flow, the POD modes can be computed once and for all, using direct numerical simulation
(DNS), or highly resolved experimental velocity fields, such as those obtained by particle image velocimetry.
An instantaneous velocity field can thus be reconstructed by estimating the coefficients aiðtÞ of its Galerkin
representation.

One simple approach to estimate the POD coefficients is to approximate the flow measurements in a least
square sense, as done, for instance, in [12]. A similar procedure is also used in the estimation based on gappy
POD, see [9,24,25]. Another possible approach, the linear stochastic estimation (LSE), is based on the assump-
tion that a linear correlation exists between the flow measurements and the value of the POD modal coeffi-
cients (see, for instance, [4]).

However, these approaches encounter difficulties in giving accurate estimations when three-dimensional
flows with complicated unsteady patterns are considered, or when a very limited number of sensors is avail-
able. Under these conditions, for instance, the least squares approach mentioned above (LSQ) rapidly
becomes ill conditioned. This simply reflects the fact that more and more different flow configurations corre-
spond to the same set of measurements. To circumvent these problems, many contributions in the literature
have sought to determine the best sensor placement (see e.g. [20,8,7,25]). For example in [25], a systematic
approach to sensor placement is formulated within the gappy POD framework using a condition number
criterion.

In order to improve estimation performance, extensions of the above methods have been proposed:
quadratic stochastic estimation (QSE) [2,19] and spectral linear stochastic estimation (SLSE) [10]. They allow
more accurate estimations than LSQ or LSE methods, but, in fact, neither takes into account the underlying
dynamic model that the POD coefficients must satisfy, i.e., a finite dimensional equivalent of the
Navier–Stokes equations that is obtained by Galerkin projection of the flow equations on the POD modes
retained for the representation of the velocity field.

In the literature one finds estimation techniques that take into account the underlying partial differential
equations, using control theory tools [16]. Classical estimations based on such methods are those applied in
meteorology where the mismatch between predictions and observations is minimized as function of the initial
conditions [15]. More recent applications of these ideas are those used in seismology, where the source of an
earthquake is sought once the ground displacement is measured [3]. Computing the exact solution of such
inverse problems requires large computational facilities for realistic cases since the state equation, the adjoint
equation and the optimality conditions must be simultaneously solved. In this sense, the novelty of the present
study is to discuss an approach that combines a linear estimation of the coefficients aiðtÞ with an appropriate
non-linear low-dimensional flow model. Compared to the classical inverse problems mentioned above, the
solution is obtained with a negligible computational effort, at the cost of obtaining an approximate solution.
The degree of approximation will be related to the possibility of an actual low-order representation.

The approach that we propose combines a linear estimation of the coefficients aiðtÞ with an appropriate
non-linear low-dimensional flow model. Our objective is not, however, to propose an estimation method that
can be readily implemented for real time applications, even if a few indications in this direction are given.
Instead, our objective is to understand whether a non-linear observer outperforms existing linear flow observ-
ers, without the constraints imposed by an actual recursive algorithm, e.g., a real-time computation. More-
over, instead of what was done, for example, in [13], this study is confined to a deterministic framework,
since the model, as well as the measurements, are supposedly not affected by noise. The measurements are
not affected by noise in the sense that we do not take into account the errors introduced by the actual instru-
ments. The model is not affected by noise in the sense that although it will only be approximate, we will not try
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to mimic the model deviations by adding noise with appropriate statistical characteristics. Our results will
show that, within this framework, dynamic estimations based on low-order models turn out to be more sat-
isfactory than static approaches, i.e., those which use no model.

In addition, we address the issue of the sensitivity of the proposed approach to sensor type and location.
Finally, we present an application to a flow, which is characterized by a significant three-dimensionality and
non-periodic dynamics.

2. Flow set up and low-order model

The flow over an infinitely long square cylinder symmetrically confined by two parallel planes is considered.
A sketch showing the geometry, the frame of reference and the adopted notation is plotted in Fig. 1. At the
inlet, the incoming flow is assumed to have a Poiseuille profile with maximum center-line velocity Uc. Two
Reynolds numbers Re ¼ U cL=m were considered, one at which the flow is two-dimensional ðRe ¼ 150Þ and
the other one leading to a three-dimensional flow in the wake ðRe ¼ 300Þ. With reference to Fig. 1,
L=H ¼ 1=8, Lin=L ¼ 12, Lout=L ¼ 20 and Lz=L ¼ 0:6 for the two-dimensional case, whereas L=Lz ¼ 6 for the
three-dimensional one. Periodic boundary conditions are imposed in the span-wise direction and no-slip con-
ditions are enforced both on the cylinder and on the parallel walls. Details concerning the grids and the numer-
ical set up are reported in [5]. All the quantities mentioned in the following have been made non-dimensional
by L and U c. The two-dimensional flow obtained at Re ¼ 150 is a classic vortex street with a well defined shed-
ding frequency. However, the interaction with the confining walls adds to the complexity of the flow and leads
to some peculiar features, like the fact that the vertical position of the span-wise vortices is opposite to the one
in the classic von Kármán street [6]. In the three-dimensional case the situation is even more complex, due to
instabilities developing in the span-wise direction. The flow is no longer periodic and exhibits complicated flow
patterns [5].

The POD modes UkðxÞ are found using the snapshot method [21]
Uk ¼
XN

i¼1

bk
i U ðiÞ
where U ðiÞ ¼ uðx; tiÞ are flow snapshots taken at times ti 2 ½0; T �, N is the number of snapshots, k 2 f1; . . . ;Ng,
and the coefficients bk

i 2 R are such that the vectors ðbk
1; . . . ; bk

N Þ are the eigenvectors of the time correlation
matrix

R
X U ðjÞ �U ðlÞ dx, of size N � N . Only a limited number of modes, N r, is used to represent the velocity

field. In particular we chose Nr ¼ 6 for the two-dimensional case. For the three-dimensional case we derived
two models with Nr ¼ 20 and N r ¼ 60, respectively.

A Galerkin projection of the incompressible Navier–Stokes equations over the retained POD modes has
been carried out. This leads to the following Nr-dimensional dynamical system
RrðaðtÞÞ ¼ _arðtÞ � Ar � CkrakðtÞ þ BksrakðtÞasðtÞ ¼ 0

arð0Þ ¼ ðuðx; 0Þ � �uðxÞ;UrÞ
ð2Þ
Fig. 1. Computational domain X.
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where aðtÞ : I ! RNr and aðtÞ ¼ fa1ðtÞ; . . . ; aNrðtÞg; r, k and s run from 1 to N r and the Einstein summation
convention is used. The scalar coefficients Bksr come directly from the Galerkin projection of the non-linear
terms in the Navier–Stokes equations, and they can easily be expressed in terms of the POD modes. The scalar
terms Ar and Ckr are calibrated using a pseudo-spectral method to take into account the pressure drop, as well
as the interaction of unresolved modes in the POD expansion. Indeed, we could in principle write the solution
of the equation for the unresolved modes as a function of the resolved ones and then inject this solution into
the equation for the resolved modes. We do not use such an explicit solution as done for example in [18], but
instead, find its MacLaurin expansion up to the linear term by an optimization technique. Thus, the calibra-
tion terms that we add to the model can be interpreted as the coefficients of such an expansion.

In this paper we consider two calibration methods. The first consists in solving an inverse problem, where
the coefficients Ar and Ckr are found in order to minimize the difference, measured in the L2 norm, between the
model prediction and the actual reference solution. See [11] for a detailed discussion of the calibration tech-
nique. The resulting model for the two-dimensional flow configuration considered here is very accurate in
describing the asymptotic attractor [12,11]. For the three-dimensional case, it was shown in [5] that the cali-
brated model is capable of accurately reproducing the complicated flow dynamics resulting from the interac-
tion of the three-dimensional vortex wake with the confining walls inside the calibration interval. Although
very accurate, the computational cost of obtaining this model is not negligible when the number of modes
is large or when the flow shows a large span of time frequencies. We denote this calibration technique by M1.

For this reason, we used an alternative method that gives a reasonable model at the cost of a matrix inver-
sion. The idea is simple. We ask that the terms Ar and Ckr are such that
Z T

0

_ar dt ¼ ArT þ Ckr

Z T

0

ak dt � Bksr

Z T

0

akas dt ð3Þ
and
 Z T

0

_aram dt ¼ Ar

Z T

0

am dt þ Ckr

Z T

0

akam dt � Bksr

Z T

0

akasam dt ð4Þ
are satisfied 8r;m 2 f1; . . . ;Nrg. The time interval ½0; T � is the same as that considered for building the POD
modes. Hence, all the integrals in the above equations are known and, for each r, a set of Nr þ 1 linear equa-
tions is obtained for the coefficients Ar and Ckr. It can be seen that this technique amounts to a minimization of
the model prediction error in the H 1 norm. We denote this technique by M2.
3. Non-linear observer

Our aim is to provide an estimation of the modal coefficients starting from Ns flow measurements
fk; k 2 f1; . . . ;Nsg. Let �aiðtÞ be the projection of the velocity field uðtÞ over the ith POD mode and aiðtÞ be
its estimated value at time t.

We assume that each measurement fk is a scalar quantity which depends linearly on the instantaneous
velocity field uðtÞ. For instance, fk can be a point-wise measurement of a velocity component, or of a shear
stress, or it can be a spatial average of a linear combination of velocity components.

The available spatial information may be exploited by using a LSQ approach, as done in [12]. At any given
time s, thanks to the linearity of fk with respect to u and to the modal decomposition of the velocity field (see
Eq. (1)), fk can be written in terms of POD modes
fkðuðsÞÞ ’
XNr

j¼1

ajðsÞfkðUjÞ ð5Þ
where fkðUjÞ is obtained by applying fk to the vector field associated to mode Uj. The following least-squares
problem then has to be solved for every s
min
fx1ðsÞ;...;xNr ðsÞg

XNs

k¼1

fkðuðsÞÞ �
XNr

j¼1

xjðsÞfkðUjÞ
 !2

ð6Þ
where xjðsÞ is an optimization variable representing the mode coefficient at time s.
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This minimization leads to a N r-dimensional linear system of equations. Once this system is solved, the esti-
mated modal coefficients can be written
ajðsÞ ¼
XNs

k¼1

� kjfkðuðsÞÞ ð7Þ
where ! is a known rectangular matrix of size Ns � Nr. The error minimization (6) leads to a linear represen-
tation of the estimated modes as functions of the measurements. When the number of the modes retained is
larger than the number of sensors, matrix � is rank deficient. In such cases we opted for a Tikhonov regular-
ization technique: among the infinite number of solutions we chose the one that minimizes the sum of the
squared residuals and the norm of the solution multiplied by a small positive factor.

The LSE approach, conversely, exploits temporal rather than spatial information and is based on the
assumption that a linear relation exists between the modal coefficients and the measurements
ajðsÞ ¼
XNs

k¼1

KkjfkðuðsÞÞ ð8Þ
where K is now an unknown rectangular matrix of size N s � N r. This matrix is determined by imposing that
8j 2 f1; . . . ;Nrg and 8k 2 f1; . . . ;N sg
Z T

0

�ajðtÞfkðuðtÞÞdt ¼
Z T

0

XNs

m¼1

KmjfmðuðtÞÞfkðuðtÞÞdt ð9Þ
The time interval ½0; T � is the same as that considered for building the POD modes. Hence, since the left-hand
side is known, a set of linear equations is obtained; these uniquely define the matrix K.

The LSQ and LSE both provide linear estimation of the modal coefficients. Matrices � and K have the
same size, although the coefficients are different. In the following we overcome the assumption of a linear
relation.

Let us assume that a certain number of measurements at consecutive times sm, m 2 f1; . . . ;Nmg are avail-
able. The main idea of the dynamic estimation approach proposed here is to impose that the coefficients of the
modal expansion of the velocity field give the best approximation of the available measurements, using either
LSQ (7) or LSE (8), and that at the same time they satisfy as closely as possible the non-linear low-order model
(2).

In the LSQ case this is done by minimizing the sum of the residuals of (7) and the residuals of (2) for all
times sm. More precisely, let aðtÞ : R! RNr and aðtÞ ¼ fa1ðtÞ; . . . ; aNrðtÞg, we have
aðtÞ ¼ argmin
xðtÞ

XNm

m¼1

XNr

r¼1

R2
r ðxðsmÞÞ þ CR

XNr

r¼1

xrðsmÞ �
XNs

k¼1

� krfkðuðsmÞÞ
 !2

24 35 ð10Þ
where xðtÞ ¼ fx1ðtÞ; . . . ;xNrðtÞg is an optimization variable standing for the mode coefficients vector at time t.
The parameter CR is a weight, giving more or less importance to the measurements (LSQ) or to the dynamic
model in the definition of the residual norm. This parameter could be replaced by a matrix that takes into
account a priori information like the reliability of some of the measurements vs. others, or the model error
statistics. In the numerical experiments reported here, this parameter was set in a heuristic way, leaving further
developments to future investigations.

The minimization of this functional is reduced to a non-linear algebraic problem. As in [11], a pseudo-spec-
tral approach is used and each arðtÞ is expanded in time using Lagrange polynomials defined on Chebyshev–
Gauss–Lobatto collocation points. The necessary conditions for the minimum are obtained by the adjoint
method and they result in a non-linear set of algebraic equations for the coefficients of the Lagrange polyno-
mials [11]. The solution is obtained by a Newton method, which, in the present applications, usually converges
in a few (typically 5–8) iterations. The complexity of the method is equivalent to the complexity of any
technique employed to solve a system of non-linear algebraic equations. The systems we are dealing with
are usually small (Nr � Nm unknowns) and hence the computational time to find the solution is small. However,



M. Buffoni et al. / Journal of Computational Physics 227 (2008) 2626–2643 2631
the main reason that prevents us from using the present method in real time is that we need to collect the entire
time history of the measurements before performing the estimation.

The solution to problem (10) provides an estimation for the POD modal coefficients for all retained modes
and for all instants at which measurements are available. This enables the reconstruction of the entire flow
field at the same instants through Eq. (1). The above method, therefore, represents a non-linear observer of
the flow state. In the following, it will be referenced as K-LSQ.

A similar approach can be obtained for the LSE technique, by substituting, in Eq. (10), the residuals of Eq.
(7) by those of Eq. (8). This approach is referenced as K-LSE.

In the literature, there exist other flow estimation techniques that are non-linear in the flow measurements.
In the following we will compare the results of the proposed non-linear dynamic estimation to one of them, the
quadratic extension of LSE [2,19]. LSE is based on the assumption that Eq. (8) is just the first term of a Taylor
expansion with respect to the sensor measurements, whereas QSE takes into account the second order term,
too. Hence, we have
ajðsÞ ¼
XNs

k¼1

KkjfkðuðsÞÞ þ
XNs

k¼1

XNs

m¼1

XkmjfkðuðsÞÞfmðuðsÞÞ ð11Þ
where the scalar coefficients Kkj and Xkmj are obtained using double, triple and quadruple correlations between
measurements in an equation equivalent to (9). This approach is referred to as QSE.

Once the matrices appearing in Eqs. (7), (8) and (11) are computed, the estimation of the modal coefficients
at a certain time is based on the measurements made at the same time.

In contrast, Ewing and Citriniti [10] and Tinney et al. [23] proposed to take into account integrated tem-
poral data by assuming a linear dependence between the modal coefficients and the flow measurements in a
non-local way, and working in the frequency domain. Let â be the Fourier transform of a and f̂ j that of
fj, then for each frequency we set
âj ¼
XNs

k¼1

bCkjf̂ k ð12Þ
where bCkj is a matrix obtained by appropriate ensemble averages and depends on the frequency. In the time
domain this amounts to a convolution integral between the measurements and the time dependent matrix C.
We call this approach SLSE. As compared to QSE and SLSE, the dynamic estimation procedure that we pro-
pose is non-linear and, at the same time, it takes into account the evolution of the modal coefficients in time by
constraining such evolution to a model, in the weak sense determined by Eq. (10).

Concerning the applicability of the methods described above, it is important to recall that the LSE and LSQ
approaches are readily applicable to real-time estimation, QSE also, although the cost of this last approach
scales as N 2

s instead of linearly as in the previous two cases. Conversely, the SLSE approach is more difficult
to use for real-time estimations, since it uses the whole temporal history of the measurements, collected in a
time interval, coupled together (linearly) via the discrete Fourier transform (DFT). This implies that the esti-
mation problem must be tackled after having collected enough temporal information and it consists of a num-
ber of LSE problems equal to the number of retained frequencies, plus additional DFT’s of the measurements
and of the estimated POD coefficients. Similarly to what was done in the SLSE approach, in the present
dynamic estimations the temporal histories of the measurements are coupled together (non-linearly) by the
dynamic POD model. This aspect poses difficulties in a real-time application. Indeed, as pointed out in the
introduction, K-LSQ or K-LSE are thought to be applied a-posteriori, because their computational cost,
although unimportant in a post-processing phase, is large for a real-time analysis. Nevertheless, although
actual real-time applications are premature, a proposal for their prospective implementation for real-time esti-
mation is the following. The flow state at a given time t� could be estimated by considering the measurements
taken at that time and at the previous N m � 1 ones. At the following sampling time, the corresponding new
measurements are added and the oldest ones are dropped, keeping the number of measurements considered
constant. In other words, reconstruction is carried out using a fixed number of measurements distributed in
a time interval which is located before t�, and which translates as time increases. The sampling rate (i.e.
sm � sm�1) and Nm can be tuned in order to decrease the computational costs while granting the level of accu-
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racy required by the particular application. Moreover, when a new set of measurements is added, the Newton
method for solving the non-linear system would be restarted from the previous solution, which is already close
to the final solution, thus definitely reducing the number of iterations for convergence. In contrast with the
other methods, the proposed approaches need a working Galerkin model as a fundamental ingredient. The
construction of such a model can be carried out from the information needed to build the POD database,
a necessary step for all the methods considered here. Therefore no additional information is needed as com-
pared to other approaches. Moreover, when using the calibration method M2, the cost of building such a
model is negligible.
4. Results and discussion

The K-LSQ and K-LSE are used to reconstruct the flow in the configuration described in Section 2, both in
the two- ðRe ¼ 150Þ and three-dimensional ðRe ¼ 300Þ cases. Results are compared to those obtained by the
most common techniques available in the literature and reviewed in the Introduction.

Accuracy in the prediction of the single modal coefficients and in the reconstruction of the velocity fields
was evaluated. In both cases, differences with respect to the reference case (DNS) were quantified in terms
of relative error in the L2 norm, i.e., the L2 norm of the difference between the estimated and the reference
quantity divided by the norm of the reference quantity.

Several parameters are involved in the set-up of the K-LSQ and K-LSE models. They are related to (i) the
dynamic POD model: number of retained modes, calibration interval, number and temporal distribution of
available snapshots; (ii) the selected flow measurements: number, type and collocation.

As for the flow measurements, both velocity and shear-stress sensors were used. While velocity measure-
ments are often considered in the literature, due to their widespread use in practice, shear-stress sensors are
less common. Nevertheless, they were used here mainly because they are challenging from a numerical point
of view, as they involve spatial derivatives of the POD modes. Also, they can be implemented in practice
although limitations of accuracy and time resolution may exist (see, for instance, [22]). Different sensor loca-
tions were tested, to account for the sensitivity of the proposed approaches to sensor placement. Since the per-
formance of the standard techniques such as LSE or LSQ is influenced by sensor placement, some sensor
configurations were selected following the suggestions given for LSE in [8]. On the other hand, none of the
considered sensor configurations is optimized for K-LSE or K-LSQ, in order to verify the sensitivity of such
methods with respect to sensor placement. In fact, optimal sensor placement may turn out to be a time-con-
suming operation for complex three-dimensional flows.
4.1. Two-dimensional case: Re ¼ 150

The low-order model of the two-dimensional flow is obtained using 95 snapshots, uniformly distributed
throughout two vortex-shedding cycles (T ’ 13 is the non-dimensional duration of the time interval), and
by retaining N r ¼ 6 modes. The calibration of the model is performed in the same interval using 81 collocation
points with method M1. As shown in [12], the calibrated model accurately reproduces the flow inside and out-
side the calibration interval.

For this rather simple flow, we consider the situation in which a limited number of measurements are avail-
able, i.e. only two sensors. Three different configurations were analyzed, two involving streamwise velocity
sensors and one involving shear-stress sensors.

The velocity sensors were placed in relation to the spatial structure of the streamwise component of the first
two POD modes. In particular, in the first configuration one streamwise velocity sensor is placed on the max-
imum of the first POD mode which is closest to the cylinder ðP1 ’ ð2:39; 0:52ÞÞ and one in the middle, between
P1 and the minimum of the second POD mode closest to the cylinder ð’ ð1:96; 0:50ÞÞ. The second configura-
tion has the first streamwise velocity sensor in P1 and the second one at point (1.98, �0.76). A third config-
uration was considered with two shear-stress sensors located on the confining walls ðy ¼ �4:0Þ at x ¼ 4, in a
region which satisfies the following criteria on a shedding cycle: the rms value of the shear-stresses is maximum
and the reconstruction error of the shear-stresses is minimum for a given number of POD modes.
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The parameter CR in the formulation of the K-LSQ and K-LSE approaches (see Eq. (10)) is set equal to 1.
It has been checked that the results do not significantly change if it varies in a neighborhood of this value.

The errors in the prediction of the modal coefficients given by LSQ, LSE, QSE, K-LSQ and K-LSE in the
first (velocity sensors) and third (shear-stress sensors) configurations are reported in Tables 1(a) and (b),
respectively. The values obtained for the second considered sensor configuration are not shown since they
are very similar to those of the first one.

The time interval over which reconstruction is performed is approximately 13 time-units long (non-dimen-
sional time); it contains two shedding cycles, and it starts just after the end of the time interval on which the
POD model was built and calibrated.

Tables 2(a) and (b) show the relative reconstruction errors on the velocity components and on their fluc-
tuating part. It appears that two (velocity or shear-stress) sensors are not sufficient to obtain reliable predic-
tions of the modal coefficients by LSQ or LSE. Accuracy problems persist also with the QSE approach, even if
in this case the predictions are more accurate than those obtained with LSQ or LSE.

This leads to severe errors in the estimation of the fluctuating part of the velocity field since the first two
POD modes represent about 94.8% of the fluctuating energy. Even if the mean flow energy is important with
respect to the fluctuating energy, errors in the modal coefficients lead to detectable errors in the reconstruction
Table 1
Relative percentage errors (in L2 norm) on the estimation of the POD modal coefficients ðeðaiÞÞ in the first (a) and third (b) sensor
configuration

eða1Þ% eða2Þ% eða3Þ% eða4Þ% eða5Þ% eða6Þ%
(a)

LSQ 36.33 64.75 280.55 265.66 145.31 117.94
LSE 71.06 27.12 99.71 97.97 99.91 99.93
QSE 20.67 13.03 20.66 40.99 91.05 88.01
K-LSQ 0.47 0.55 2.58 2.66 4.65 4.67
K-LSE 0.82 0.76 9.82 9.82 14.98 15.59

(b)

LSQ 63.61 84.81 109.32 107.17 100.53 101.39
LSE 46.87 91.97 102.83 100.99 101.40 100.21
QSE 33.32 56.00 78.28 41.62 95.31 75.64
K-LSQ 0.06 0.09 6.06 6.09 9.72 9.56
K-LSE 2.99 3.08 7.07 8.31 17.99 18.47

In this case time-averaging is carried out over the estimation time period.

Table 2
Relative percentage errors (in L2 norm) on the estimation of the velocity components ðeðUÞ,eðV ÞÞ and of their fluctuating part ðeðU 0Þ,
eðV 0ÞÞ, in the first (a) and third (b) sensor configuration

eðUÞ% eðV Þ% eðU 0Þ% eðV 0Þ%
(a)

LSQ 10.31 57.49 72.15 65.88
LSE 6.32 37.14 53.96 54.26
QSE 2.41 16.06 20.65 23.45
K-LSQ 0.63 3.97 5.39 5.80
K-LSE 0.69 4.42 5.93 6.46

(b)

LSQ 10.60 64.57 74.31 73.82
LSE 8.05 46.14 68.32 67.44
QSE 4.70 28.28 39.81 41.37
K-LSQ 0.65 4.10 5.54 6.00
K-LSE 0.77 4.91 6.54 7.17

In this case time-averaging is carried out over the estimation time period.
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of the velocity components. Note that the reconstruction errors on the vertical component are larger than
those on the streamwise one. This is simply because the contribution of the mean flow on the vertical compo-
nent is much lower than on the streamwise component. Tables 1 and 2 show that both K-LSQ and K-LSE give
an accurate estimation not only of the first two modal coefficients, but of all the retained modes. This leads to
a precise estimation of the velocity field as well as of its fluctuating part. Moreover, the accuracy of the results
is very similar, whether using shear-stress or velocity sensors, indicating a weak sensitivity of the approach to
the type and location of the sensors. This is not the case for the LSQ, LSE and QSE methods, which show a
higher sensitivity to these aspects, confirming what has already been reported in the literature. When the num-
ber of sensor increases, the difference between static and dynamic estimations tend to reduce, as they both tend
to the correct values of the Galerkin coefficients.

We compare our results to those of [8], Table 2(a) 13th case. With LSE and two sensors they found
eða1Þ ’ 76:6% and eða2Þ ’ 15:1%, errors that are similar to those reported in Table 1(a) for LSE. Using the
dynamic estimation, the errors on the same coefficients are two orders of magnitude lower. Furthermore, using
the K-LSQ method and two shear-stress sensors (Table 1(b)) the first two modal coefficients are estimated with
an error lower than 0.1%, i.e., three orders of magnitude lower than LSE. The estimation results relative to K-
LSQ and K-LSE are practically identical if the low-order models are built either by M1 or M2.

The computational times are basically negligible for all cases: the static estimations are accomplished within
a fraction of a second (0.0003 s for LSE on a standard personal computer), whereas the dynamic estimations
take a longer but still very small time (K-LSQ: 0.6 s, K-LSE: 0.3 s on the same computer).

4.2. Three-dimensional case: Re = 300

The flow patterns in this case are definitely more complex than those in the previous one (see [5]).
Two low-order models of the developed three-dimensional flow were derived retaining the first 20 or 60

POD modes obtained from a database of 151 snapshots, uniformly distributed over eight vortex-shedding
cycles (’ 52 non-dimensional time units from 360 to 412). Calibration was carried out in the same time inter-
val using method M2 (see Section 2). The results obtained by integrating the dynamic model within the cal-
ibration interval are reported in Figs. 2 and 3, in which the calibrated POD coefficients are compared to those
obtained from the projection of the fully resolved Navier–Stokes simulations. A comparison between the
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results obtained using the two different calibration techniques (M1 and M2) is also provided. Model M1 is of
course more accurate, although the differences become almost negligible as the number of modes retained
increases. In both cases, the POD model shows a good accuracy inside the calibration interval. However,
in the three-dimensional case, these results tend to deteriorate outside the time interval in which the calibration
is performed, as shown in the following. Furthermore, we analyze the ability of the retained POD modes to
represent the flow field in the interval in which the flow estimation is carried out. This time interval begins
about 82 time units after the end of the calibration interval (at time 494), and is approximately 30 time units
long, including approximately four shedding cycles. In Table 3 we give the minimum error that we can hope to
achieve when reconstructing the fluctuating part of the velocity components. The minimum error corresponds
to the case where the estimated POD coefficients coincide with those obtained by projecting the reference
Navier–Stokes solution over the POD modes, i.e., �aiðtÞ ¼ aiðtÞ. This error is computed over the entire domain,
and over a subset defined by 0 6 x=L 6 6, which corresponds to the near wake of the cylinder. These errors are
not small, even if we increase the number of modes from 20 to 60, as shown in Table 3. In fact, using a larger
number of POD modes does not help in general. Using 60 modes instead of 20 does not reduce significantly
the representation error because the modes from 20 to 60 are not statistically relevant outside the reference
interval where the snapshots were taken. In other words, in order to increase the representativeness of those
modes (20–60) outside the reference interval one should take larger databases encompassing longer time lags.
However, the problem is that the convergence rate of the POD modes with respect to the number of snapshots
included in the database is very low. In this case, for example, using 60 modes, the relative approximation
Table 3
Minimum errors on the fluctuating part of the velocity components

eðU 0entÞ% eðV 0entÞ% eðW 0
entÞ% eðU 006Þ% eðV 006Þ% eðW 0

06Þ%
20 modes 57.48 43.41 95.57 47.27 43.21 99.37
60 modes 56.78 41.76 94.72 46.34 41.21 98.77

Twenty and 60 POD modes, over the entire flow field (ent) and over the near wake (06). The time interval considered is 82 non-dimensional
time units (about 10 shedding cycles) away from the time interval where the POD modes were derived.
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error goes down from 40% to 30% when the database goes from 151 snapshots to 912 snapshots, that is the
limit of our computational resources.

The largest errors are on the span-wise component, since the retained POD modes poorly represent this
component of the velocity as it is not energetically significant, in average, with respect to the remaining ones.
This aspect might be improved working on the construction of the POD basis choosing, for instance, a differ-
ent norm which gives more weight to the span-wise component of the velocity or which corresponds to a quan-
tity different from kinetic energy.

In other words, the accuracy of the best possible reconstruction is limited from above by the capability of
the POD modes to actually represent the flow outside the time interval where the snapshots were taken, which
however, increases using a larger snapshots database, as shown in [5]. Note, however, that this problem is
common to all the considered reconstruction techniques, since they all use the POD representation of the
velocity field. Because of the complexity of the flow, more measurements were used for the reconstruction pro-
cedure, organized in five different configurations, two involving only velocity measurements and three involv-
ing both velocity and shear-stress measurements. In the last three configurations, the shear-stress sensors were
selected following the same criterion adopted in the 2D case, they are 14 in number and in all considered cases
are symmetrically placed on both the confining walls ðy ¼ �4Þ at x ¼ 4 and z ¼ f1:2; 1:5; 2:7; 3; 3:3; 4:5; 4:8g.
The placement of the velocity sensors has again been chosen on the basis of the spatial structure of the stream-
wise velocity of the first 12 POD modes. The different configurations are listed below, together with a brief
description of the rationale for the placement of the velocity sensors:
Table 4
Positions of the velocity sensors in the three-dimensional case, configuration (e)

Velocity sensor x y z

1 5.02 0.96 2.00
2 7.00 0.96 2.00
3 6.01 �0.96 2.00
4 6.01 0.96 4.00
5 5.02 �0.96 4.00
6 7.00 �0.96 4.00
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Fig. 4. Relative percent error in the reconstruction of the fluctuating U component, when varying CR: (a) KLSE; (b) KLSQ.
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(a) Twenty four velocity sensors distributed on six equispaced slices in the axial ðzÞ direction; on each slice,
the sensors are on the lines connecting the maximum and minimum, closest to the cylinder, of the first
two POD modes. On each segment, the sensors are approximately in the middle, but slightly closer to the
extrema of the first POD mode.

(b) Twenty four velocity sensors distributed on four equispaced slices in the axial ðzÞ direction; on each slice,
three points are selected in the region of overlapping between the maxima and minima of the low-fre-
quency POD modes (modes 3, 4, 7, 8, 9 and 10) and three on the overlapping region of the extrema
of the vortex-shedding modes (modes 1, 2, 5, 6, 7, 11 and 12) (see [5] for details on the separation
between low-frequency and vortex-shedding POD modes).

(c) Fourteen shear-stress sensors and 10 velocity sensors distributed on five equispaced slices in the axial ðzÞ
direction; on each slice, the velocity sensors are placed on the maximum and minimum closest to the cyl-
inder of the first POD mode.

(d) Fourteen shear-stress sensors and 10 velocity sensors. Six equispaced slices in the axial ðzÞ direction are
considered. On four slices, two velocity sensors are placed as in the previous case. Two sensors are placed
on the remaining slices, corresponding respectively to the maximum and minimum of the third POD
mode (low frequency mode).

(e) Fourteen shear-stress sensors and six velocity sensors located in the wake, at the points reported in
Table 4.

The parameter CR of Eq. (10) was selected by experimenting with different values. For example, in Fig. 4(a),
we show the L2 relative error for the reconstruction by K-LSE of the fluctuating U component, as a function of
CR. The results are relative to configuration (b). The plotted curve shows a minimum for CR ¼ 0:2 and there-
fore in the following we chose CR ¼ 0:2 for K-LSE. Note that for CR P 102 the results are basically those of a
simple LSE. A similar analysis was performed using K-LSQ (see Fig. 4(b)) and the best value that was selected
is CR ¼ 1.

Results relative to configuration (b) are reported in Fig. 5, where some representative modal coefficients
predicted by the calibrated POD model M2 with 20 modes, LSQ, LSE, K-LSQ, K-LSE and SLSE are plotted,
together with the projection of the DNS velocity fields on the corresponding POD mode. Results for config-
uration (b) are shown because the sensor placement is appropriate for the LSE method, as already discussed,
and this makes the comparison with the proposed approaches more comprehensive.

In Fig. 5, left column, one can observe that, in contrast with the two-dimensional case and as previously
stated, the POD model is less accurate outside the calibration interval. However, long after the end of the cal-
ibration interval, the model remains stable, and the error bounded. The results obtained with the other sensor
configurations or with model M1 are similar to those reported in Fig. 5, except for LSE and LSQ methods
which are less accurate as they are more sensitive to sensor placement. In Fig. 5 it is seen that LSE and
LSQ, provide reasonable predictions only for the first two modal coefficients, that are associated with the vor-
tex-shedding dynamics. The second modal coefficient, not shown in the Figure, is identical to the first one
except for a phase shift of p=2 in time. However, the results in terms of approximation are the same. The pre-
dictions of the remaining modes are completely unreliable. When dynamic estimation is applied, or when the
Table 5
Reconstruction errors obtained with model M2 and 20 modes for sensor configurations (a) and (b)

eðU 0entÞ% eðV 0entÞ% eðW 0
entÞ% eðU 006Þ% eðV 006Þ% eðW 0

06Þ%
SC (a)

KLSQ 63.54 49.77 101.11 48.78 44.92 106.65
KLSE 62.63 48.37 100.95 47.22 44.26 101.71
SLSE 66.39 49.12 104.92 49.77 46.59 110.60

SC (b)

KLSQ 64.67 49.77 102.26 49.94 48.35 108.64
KLSE 61.40 47.03 98.45 47.17 43.73 101.09
SLSE 95.77 91.14 110.56 91.15 89.14 112.42

Errors computed on the entire domain (ent) and in the near wake (06).
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SLSE approach is used, predictions are definitely improved. In particular, this is true for modes like a1 or a11

that are related to the vortex-shedding, i.e., almost periodic with a period that is the same or a multiple of the
vortex-shedding period. The prediction of the remaining modes is less accurate (see a3 and a20), especially
when very low frequencies are dominant, as in the case of a3. However, the overall accuracy is significantly
Table 6
Reconstruction errors obtained with model M2 and 20 modes for sensor configurations (c), (d) and (e)

eðU 0entÞ% eðV 0entÞ% eðW 0
entÞ% eðU 006Þ% eðV 006Þ% eðW 0

06Þ%
SC (c)

KLSQ 62.68 48.72 100.00 48.53 45.54 103.87
KLSE 66.76 51.78 99.42 53.94 51.87 103.85
SLSE 76.01 56.46 112.81 53.60 52.72 118.65

SC (d)

KLSQ 67.54 53.44 104.86 52.16 48.86 111.07
KLSE 64.35 51.14 101.01 52.06 50.58 105.30
SLSE 70.95 55.75 108.64 55.24 55.30 116.96

SC (e)

KLSQ 132.40 97.56 162.68 96.73 100.01 183.59
KLSE 64.37 49.63 99.49 52.10 50.20 103.12
SLSE 79.12 58.98 115.97 57.16 55.15 124.96

Errors computed on the entire domain (ent) and in the near wake (06).
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improved in comparison with the LSQ and LSE approaches alone. The static estimations are accomplished
within a fraction of a second (0.0012 s for LSE), whereas the dynamic estimations still take less than a minute
(K-LSQ: 21 s, K-LSE: 25 s).

In Tables 5 and 6, the actual errors obtained using 20 modes are given. The errors of LSE and LSQ are not
included since they are larger than the others. We observe that the dynamic approaches are systematically
more accurate than SLSE and that the reconstruction errors can be considered satisfactory as they are close
to the minimum error possible (see Table 3). Furthermore the reconstruction errors progressively increase
Table 7
Comparison between reconstruction errors obtained with model M2 and 20 or 60 modes for sensor configuration (b)

SC (b) eðU 0entÞ% eðV 0entÞ% eðW 0
entÞ% eðU 006Þ% eðV 006Þ% eðW 0

06Þ%
KLSE 20 M 61.40 47.03 98.45 47.17 43.73 101.09
KLSE 60 M 61.37 46.70 98.65 46.93 42.85 100.77

Errors computed on the entire domain and in the near wake.

Fig. 7. Isosurfaces of the velocity components u (left, grey ¼ 0:5; dark grey ¼ 1:0), v (center, grey ¼ �0:25;dark grey ¼ 0:25) and w (right,
grey ¼ �0:075;dark grey ¼ 0:075) of a snapshot outside the database: (a) actual snapshot; (b) snapshot projected on the retained POD
modes; (c) reconstructed snapshot using the K-LSE technique with the sensor configuration (b).
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moving away from the cylinder in the downstream direction. Concerning the span-wise component of the
velocity, as previously discussed, errors are large since the retained POD modes themselves poorly represent
this component of velocity (see Tables 5 and 6).

As an example of an actual estimation in the physical space, we considered two points located on the sym-
metry plane orthogonal to the span-wise direction. They were selected in order to represent the typical results
obtained. In Fig. 6 we show the actual U 0 and V 0 components of the velocity obtained by DNS, the projection
on the POD basis as well as the estimation obtained by K-LSE, using M2, 20 POD modes and sensor config-
uration (b). We observe that the estimation is accurate for the point in the wake where the time evolution is
smooth. At the other point, located on the horizontal axis in a region where highly three-dimensional phenom-
ena take place, we observe sudden bursts of activity that are filtered away by the estimation, at least for the U

component.
The K-LSQ, K-LSE and SLSE methods are similar in the sensitivity of the predictions to sensors type and

placement, which is generally low. Nevertheless, the predictions given by the K-LSE method are systematically
the most insensitive to sensor placement. Table 7 compares the results obtained with 20 modes and those
obtained with 60 modes, using model M2 and sensor configuration (b). A slight improvement of the estimation
can be observed. The same conclusion applies for the other sensor configurations not reported here. Using
model M1 the results are basically the same as those shown here.

In Fig. 7 the velocity components obtained by DNS at t ¼ 426:6 (a snapshot outside the database used for
the construction and calibration of the POD model) are plotted together with their projections on the space of
the retained POD modes. These projections represent the best approximation of the flow which can be esti-
mated with the retained POD modes, and with the prediction given by the K-LSE method. It can be seen that
the main structures characterizing the streamwise and lateral velocity fields are well reconstructed. As for the
span-wise velocity component, the reconstruction accuracy is not satisfactory, but this is due to the fact that it
is one order of magnitude lower than the other components, as already discussed.

5. Conclusions

We devised a method to build a non-linear observer for unsteady flows. This method is based on the cou-
pling of a non-linear low-dimensional model of the flow with a linear technique that estimates the coefficients
of the flow representation in terms of POD modes. The underlying idea is that the estimated flow should
approximately satisfy the POD model. The coupling leads to a non-linear minimization problem solved by
a pseudo-spectral approach and a Newton method.

The non-linear observer was applied to the laminar flow around a confined square cylinder at two different
Reynolds numbers; for the first the flow is two-dimensional, while in the second case complicated three-dimen-
sional phenomena occur in the wake.

In the two-dimensional case, with a limited number of sensors, the proposed procedure is able to give a
significantly more accurate estimation of the POD coefficients and of the whole velocity field than the
LSQ, LSE and QSE approaches.

In the three-dimensional case, the flow dynamics are more complex, and not only LSE and LSQ, but also the
calibrated POD dynamical system provide poor coefficient estimations when used outside the calibration inter-
val. Conversely, the proposed procedure, combined with either LSQ or LSE, gives satisfactory predictions of
the coefficients of those POD modes that are related to vortex-shedding. For the remaining modes, the accuracy
is lower. Nevertheless, the instantaneous velocity fields are reconstructed with an accuracy close to the best pos-
sible, which is the one that would be obtained by projecting the DNS fields on the retained POD modes.

Moreover, K-LSE and K-LSQ methods are weakly sensitive to sensor type and placement. The results
obtained with the proposed approaches are comparable to those obtained by the SLSE approach, which also
uses the temporal history of the flow measurements, but in the Fourier space. This latter technique has a com-
putational complexity which is significantly larger than that of LSE or LSQ, and comparable to that of the
proposed approaches.

From the present study, it appears that, probably, for flows characterized by complex dynamics, the major
limitation of all estimation techniques based on POD is indeed the ability of the retained POD modes to ade-
quately representing the flow field.
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Thus, one way to improve the present results for the three-dimensional case is to include statistical infor-
mation concerning the errors both in the model and in the measured quantities, since the POD modes do not
give an accurate representation of the flow field. Including the parameter CR in the formulation is indeed a
rudimental approach that shows the influence of the relative weight given to the model or the measurements.

Another way is obviously to build a more accurate POD model. A possibility is to take larger data bases to
compute POD modes having better approximation properties. However, this may not be pushed too far
because of the huge amount of computational resources required for managing large DNS datasets. Another
promising approach in this direction could be to modify the scalar product used in the definition of the POD
modes in such a way as to take into account the most observable events in the flow.
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